Paper : General agen‘ts need world models

Key claims :

NAny agent that performs well in such tasks must implicitly or explicitly learn a model

of the environment.

2) This internal model can be reconstructed from the agent’s policy, showing that even seemingly model-free

agents contain "latent (oreo(ictive structure.”

3) As agent performance or goal complexity increases, the fidelity of the learned world model must also increase.

Central Question : Do Mte“igent agents like humans or advanced AI systems need world models to genero«hze and act in cow\plex environments,

or can model-free methods suffice?

Humans excel ot zero-shot and few-shot learning. we can solve new tasks with very little prior experience.
This ability is increasingly seen in large language models (e.g., GPT-3), prompting the community to explore the next frontier

" Can we build general-Purpose agents that handle long-term 9oa|s in real-world environments?"

In cognitive science, it's well established that humans don't just react to stimuli.we maintain mental models of the world:

These models help us set abstract goals (not just based on current input).

They allow us to plan actions ahead of time (deliberative behavior).

So, world models are central to \qexible, inte“?gent o{ecision-w«aking in humans.

There are two comps:

Model-based AL: Build agents that explicitly learn the environment’s dynamics.
Benefits: safer, lower sample complexity, better planning and transfer.
Cl«\a“enge: real-world environments are com(alex and hard to model accurately.

Model-free AL (Brooks’ view): Don’t learn a model at all.... just react via experience and reinfo
Pros: often works in practice and avoids hard w\oo(ehng.
Examples: RL agents like DAV or even some LLM-based agents.

However, there’s growing evidence that even model-free agents may learn implicit
models or Plann'mg structures o(uriv\g Training

Is it possible to reach human-level AT without e_xphc‘.tly learning a world model? Or is som
form of moo(ehng ‘Funo(amenta“y requireo{?

The Formal Answer: Yes, World Models Are Necessary
The authors prove:
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. Key Ins}gl«ts

Given just the policy of a well-performing agent (a goal-conditioned agent), we can extract an

i approximation of the environment’s transition o(t/vxawﬁcs.

' The better the agent (or the harder the tasks it can solve), the more accurate this extracted world

' model becomes.

If an agent can solve many simple goal-directed tasks with bounded regret (i.e., performs reasonably well),

Then it must have learned a predictive model of the environment.
This is true even if:

The agent wasn’t explicitlt/ trained to preo(ict.
The architecture is purely model-free.
There are no ra‘tionality or op‘timality asSMmp‘tbns.

Capital letters (e.q., X) represent random variables.
Notation

Lowercase letters (e.g., x) represent realized values of those variables.

Bold letters (e.q., X) represent sets of variables, such as {xX1, X2, ..., Xm}.

Propositions in brackets (e.g., [X = x]) are true/false statements, often used for conditioning or logical clarity.

A Controlled Markov Process (ecMP) is like a Markov Decision Process (MDP

) but without rewards or a discount factor.

States: S Actions: 4 Transition function: Pss'(a) = Pr(S=s'| 4=a,S =5)

a cMP describes how the world evolves in response to actions, but it does

Trajectories and Histories

not define objectives (no reward yet).

A trajectory T = (s0, a0, s1, a2, ...) is a sequence of states and actions over time.

A history h

Definition 1: Controlled Markov Process (ecMP)

=(s ;& ., st)is the trajectory up to time t representing what the agent knows so for.

A cMP is defined as a tuple (S, 4, P ss' (a))- just states, actions, and transitions.

No rewards or o(?scoun‘ting -onl(/ o((/nawﬁcs.

Assump‘tior\ 1: Standard Environment Conditions

To keep results clean and general, the authors assume:

Finite state and action spaces Irreo(udb?hty: any state is reachable from

[4] 2 2: ot least two actions, allowing real choice

Goals Using Linear Temporal Logic (LTL)

any other S‘to«t?onarit(/: transitions don’t cl«omge over time

Rather than just saying "reach state X" LTL lets us specify when something should happen using temporal operators.

'Temporal Opemtors

O(oerator Meaning Example

T (Now) Must be true now ([S =5]) - be in state s now

O (Next) Must be true in the next step O([S = s]) — reach s next step

<O (Evemtua“y) Must be true at some point S([s=¢<)]) - eventua“y reach s

These allow time-sensitive goal spec?ﬁcat}ons like:

<> ([s = s]) ~ Eventually reach state s

O(LA = alert, s = seng]) - Next, alert the engineer in state seng

S?w«(ole and Cow«(oosite Goals

Goals can be combined to express richer tasks.

1. Sequev\t?al goals Perform sub-goals in order:

y  =<@1 92, ¢3> - Do ¢ , then ¢ , then ¢

2. Alternative goals Sat‘.s{:y any one of multiple goals:

y = 1 <LLOGICAL DISIJUNCTION> y2 - Succeed if either y

Agent Definition

An agent S a Pohcy n that takes:

A history h = (s0, a0, s1, ..., st),

A goal ¢, And outputs the next action at.

Formally: r(ht, 9) - at

This is a 9oal-conoht30neo( Pol?cy.
Opt?mal Agen‘t

An optimal agent maximizes the chance of aclaieviv\g any go

¥ = argmax

Pr(z =y [ m s )

n* is the optimal Policy.

WL\ere: aY'gMO\X ™

Pr(z |= ¢ | =, s0) is the probability that trajectory v satisfies

T |= ¢ means the trajectory T satisfies the goal y.

Core Idea:
Real agents don’t need to be per{:ect—just good enougl«.
In practice, AL agents (robots, assistants, RL policies):

Work in cow«plex environments

Handle long, multi-step tasks

Sometimes fail

Instead of requiring optimality, the authors define bounded agents that are:

Formal Definition:

is achieved.

or ¢

al y from any state s

denotes the policy n that maximizes the expression.

the goal ¢, given policy © and starting state 0.

Effective on tasks with up to n sub-goals

Successful within a factor (1 - 8) of the op'timo.l agent

4

For all 9oals with complexitt/ < n, the agent's success rate must be at least:

(1 - 8) x (optimal success rate)

This ensures the agent is rel}ably competent—not pe

Exam(ale: Maintenance Robot

rfect, but close.

A bounded agent chooses the path with higher success probal:}hty.

Goal: Fix a machine (long sequence) or alert an engineer (shorter path)

We measure how close it comes to the op‘timal agent to compute S.

No S’Crong Assump’ﬁov\s

The agent doesn’t have to be Fu“y rational or optimal.

This is key real-world agents (ke LLMs or heuristics) often act imperfectly, yet we

still want to measure their capab?lities.

Wl«y It Matters

If an agent consistently performs well on structured tasks despite no explicit world model, it likely has one implicitly.

Competence implies structure, and that structure is a world model.

world model is not just a map of what the environment looks like. it's a Preohctive model of how the

environment cl«anges in response to actions.

In formal terms:

Py(a) = Pyy(a) = Pr(Sy;1 = s |

St:S,At:a)

PNs the learned approximation, and the error is bounded by €.

authors want to formally prove that even if an agent is not explicitly trained to model the
world, if it performs well on a range of goal-directed tasks, then it must internally encode an

a(a(arox§mate_ world model.

A goal—cono(?‘tioneo( agentﬂ (DeFinition 5)

THEOREM 1

That performs reasonably well (with failure rate 8) on goals of depth up to n

There exists a predictive model, denoted as P, that can

be extracted solely from the agent’s behaviorthat is,

from its Policy. This model satisfies a provable error bound.

|p55’(‘1) — Pyy(a)
And asymptotically, For small § and large »:

|Pag (@) = Pos(a)

They describe an algorithm (Algorithm 1) that operates

It tokes onlt/ the agent's pol?cy as in(ou‘t.

It queries the agent with composite goals of the form y = y_a

It observes the action the agent chooses in

The chosen action indicates whic

This, in turn, reveals information
transition probabilities.

The algori‘tl«\w\ is unsuperviseo( Gt

The error between the agent's inferred world model
and the true transition model is bounded, and this
bound o(epeno(s on how gooo( the agent is (small &)
and how comple_x the goals it can handle (large n).

(n—1)(1—4)
2/Pr (@) (1~ Pov (a))
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As the agent becomes more competent (as & a(aproacl«es 0) and is ca(oalale of
L\omo(hng imcreasingly cow\plex goals (as n approacl«\es Imcivﬁty), the
approximation error decreases at the following rates:

0O(8 / n): error due to 3mper{:ect per{:ormance
O(1 / n): error due to limited goal complexity

as fFollows:

p_b, where y_a and y_b are incompatible goals.

response.

h goal the agent "believes" is more achievable.

about the agen‘t's uno(ers‘tomohr\g of the env?ronmen‘t-Spec?gca“y, the

does not require labels or access to the environment's groumo( truth) and

universal (it can be o«(a(al'ueo( to any agent that meets the uno(erlt/img assumptions).

Main Idea: The Better the Agent, the Better Its World Model

The accuracy of the learned world model improves when:

8 - 0: The agent performs closer to perfectly.

n - nf: The o«gemt can handle longer, more complex goals.

Even if the agent isn’t very good
solve long-term goals (large n), it
model of the environment.

Key takeaWay:

(say, & is around 1), as long as it can
still needs to have a fairly accurate

p> Skill (competence)

o "B Goal depth (how com(olex or long the tasks are)

Improv?ng either one l«\elps the age_nt learn how the environment works.

Rare Events Are Hard to Learn

When the model’s error is divided by how often a transition actually happens, you get the relative error. This
error becomes huge when the transition is very unlkely.

|Pyy(a

) — Pes(a)|

Relative Error =

Pys(a)

— oo as Pyy(a) — 0

The prediction for such rare events can be very wrong, and that's okay under the theoretical bounds.

If something rarely happens in the environment, the agent doesnt need to learn it accurately.

Humans and AT age_v\ts usua“y ignore very rare events.

Only when goals get wore complex or Per‘Formance improves do agents need

to understand more of the environment.

‘l"l«ey focus on what lqap(oens often or what mat

Limitation: Sl«or‘t-Sigl«teo( Agents (hn=1)

If the agent only solves one-step (immediate) tasks:

The main theorem gives a weak (trivial) result.

It’s unclear if the agent truly avoids lpuﬁlohng a

To fix this, the authors plan to create a new result focused on myopic agents those that:

Can onlt/ handle immediate tasks

Cownpletel(/ fail at longer tasks (6 = 1 when n >

ters for acl«‘.ev‘mg goals.
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Theorem 2: Myopic Agents Don’t Need World Models

A myopic agent onlt/ aims to achieve immediat
plan ahead, just reacts.

e, depth-1 goals those that must be satisfied in the next time step. It doesn’t

In standard environments (Finite, irreducible, stationary cMPs), an optimal myopic agent reveals no information about the

environment’s transition function.

Forma“y:
[P_ss'(a) - P_ss'(a)]

This trivial bound means the agent's Policy s
function in

Imphco«‘tion You cannot recover even

actions.

Key Consequences Myopic agents do

World models are

This contrasts with Theorem 1, which shows

a)

b)

Figure 3a: Shows that the mean error in the recovered world model decreases as agents genemhze to

<e=1
consistent with any transition [0,1], oFFe_ring no Insigl«t into how the environment works.

Part?al transition o(v./naw\ics from a myopic agen‘t's behavior.

The policy doesn’t rely on or encode a world wmodel. it simplt/ maps observations to

n't learn or need world models.
essential onlc/ for: -._ aE o Mult?'S‘tep (olavming

- ASequen’CRal reasoning

A Generahzing across time

that agen‘ts solving long-l«orizor\ tasks must encode a world model.

* Any agent with bounded regret on multi-step goals must learn a world model.

* Model-free approaches cannot avoid learning a world model.

* Explicit model-based architectures are better positioned to leverage this necessity.
* Implicit world models may explain emergent capabilities in foundation models.

* Learning a small set of structured tasks can Imply enougl« knowleo(ge to generalize broaoﬂy.

* World models support Planning, uncertainty estimation, domain adaptation, and social reasoning.

* Tl«e_l./ also enable causal reasoning, counterfactual simulation, and intent attribution.
* Accurate world models are essential for AL safety, interpretability, and alignment.

* Extracting world models from agents provides a path toward safer, auditable AL.

o(ee(aer goals N con{:}rming Theorem 1.

Figure 3b: Shows error scaling with mean regret for high-depth goals (e.g.,

* Strong AL is limited by the Feasibihty of learniv\g accurate world models in cow«plex, open systewms.

* Generalization is ‘Funo(amen‘ta“(/ constrained by world wmodel {:Io(e_hty.

* ITntractable environments prevent agents from sat}s{:ying regret bounds on long—l«\or‘.zon tasks.

* Online learn?ng remains necessary in domains wl«ere moo{els cannot be Iearne_o{ in advance.

Plomning and inverse reinforcement learning (IRL) aim to recover goals or Pol?cie_s given the
environment. This work completes the triangle by recovering environment dynamics from goals

and

Unli

pohcy.

ke IRL, which requires optimal policies across environments, this method only needs policies

over mult}(:sle_ goals.

whil

e mechanistic interpretability recovers internal representations via activations, this

a(a(aroacl« o(irectlv./ recovers world models from (oolicies.

Algor}tl«m 1is unsuperviseo(, arcl«?tecture—agnos’cic, and works even when model internals are
inaccessible. It's more general than probing or sparse autoencoders (SAEs), which are tied to

Spe

cific models and environments.

This method recovers predictive transition functions P-hat_ss'(a), not just latent states. It
targets the actual environment dynamics, though the agent’s subjective model can also be
recovered with wmodified assumptions.

My

opic agents dont need to learn world models, limiting the relevance of representation

theorems focused on thewm.

Dowmain generahZation requires wore causal uv\o(e_rstanohng than task generahzation.

Future work could ap(oly this method to LTL-based agents that genemhze to formal tempoml
logic goals.

Classical representation theorems (e.q., Savage’s) rely on strong rationality assumptions and
don't explain how dynamics are learned.

By

assuming only bounded regret, this work provides a more realistic and flexible framework

than u‘tihty-haseo‘ o«(a(aroaclo\es.

The Good Regulator Theorem doesn't prove that agents learn preo(ictive models only that
tl«ey form control rules.

This work gives stronger evidence of learned world models than entropy-minimization arguments.

The results are consistent with psycl«olog?cal and neuroscience theories sugges‘ting agen‘ts build

models of their environments.

Rather than assuming world models exist, this work shows that behavioral competence implies
their presence.

Algorithm: Estimate Transition Probability P-hat_ss'(a) from Policy
Inputs:

* Agent’s policy: n(at | ht, ¢)

* Current state: s

* Action to evaluate: a

* Outcome state: ¢

* Alternative action: b # a

* Precision level: n (higher n means more accurate estimate)
Steps:

1. Initialize:

Set k* = n (this will track when the agent begins to prefer action a)
2. Loop for each k from 1 to wn:

Define sub-goals:

*

(N "Take action a"
*@ "“Take action b"
* ¢ : "Next state must be "
* @ : "Next state must be anything other than s™
Build short goal sequences:
*y = ¢ ¢ ~ Take b, then reach s’ (Fail path)
*V o= ¢ ¢ ~ Take b, then avoid s’ (Success path)

Construct composite goals:

* \ba(k, n): Succeed if agent gets 2 k successes out of n trials of y
* \Ub(k, n): Succeed if agent gets 2 k successes out of n trials of y

Combine goals:

* ¢ = palk, n)  yblk, n)

Ask the agent: "What action would you take in state s, given the goal p?"

If the agent chooses action a:

* Set k* = k
* Break the loop

3. Estimate the transition Probabihty:
P-hat_ss'(a) = (k* - 0.5) / n

Return:
Estimated transition proba‘oih‘ty P-hat_ss'(a)

n=50) - again confirming that better performance = better implicit world model.

Error bars represent a5%, confidence intervals over 10 ino(e(aeno(e_n‘tlt/ trained agents.



