Paper title : Small Language Models are the Future of Agentic AT

2.2 Statement

V1: SLMs are sufficiently powerful for language modeling in agentic applications.

V2: SLMs are more operationally suitable than LLMs for agentic systems.

V3: SLMs are more economical than LLMs in most agentic applications due to smaller size.

Conclusion: SLMs are the future of agentic AT . this is not a recommendation, but a reflection of
how differences between SLMs and LLMs align with community priorities.

2.3 Elaboration
LLM dowminance in agen‘tic o(e_sign is excessive and m?sahgneo(with Functional needs.

Most agentic subtasks are repetitive, scoped, non-conversational.

SIMs offer:
Lower la‘tency

Lower memory and compute requirements
Lower opera‘tional costs
Adequate performance for constrained tasks
Agentic systems decompose goals into modular subtasks — better fit for specialized SLMs.
Using LLMs for all tasks is a misallocation of resources.
Advocates heterogeneous agentic systems:

Default: SMs Selective fallback: LIMs

Parao(igm shift to StM-first is both tecl«nica“t/ superior and etl«ica“y
desirable due to sustaiv\aloihty concerns.

3. Position Arguments
3.1 SLMs are already sufficiently powerful (supports V1)
Capability trends: SLMs approach LLM performance due to steepening scaling curves.
Benchmarks: PlLi-2 (2.7B): On par with 30B, 15x faster
Phi-3 small (B): Comparable to 70B
Nemotron-H (2—9B): Matches 30B models
SmolLM2 (125M—1.7B): Matches 14B contemporaries, Z0B prior-gen

Hymba-1.5B: Outperforms 13B in instruction following, 3.5x faster
DeepSeek-R1-Distill (1.5-8B): Outperforms Claude-3.5 and GPT-4%0

RETRO-7.5B: Matches GPT-3 (175B) using retrieval
x(AM-2-8B: SOTA in tool ca“?ng

Agentic augmentation: Tool use, verifier feedback, self:-co»'\s?stency

Conclusion: Ca(oalaihtt/ > (ao.raw«e,ter count for agentic aPPl?cations.

3.2 SLMs are more economical (supports v3)
Inference cost:#B SLMs are 10—30x cheaper than 70—175B LLMs
Enabled Bt/ Sl/Ste,MS like NVIDIA Dynamo

Fine-tuning agility: LoRA/DoRA - fine-tuning in hours, not weeks

Eo(ge deployment: Systems like ChatRTX enable real-time local inference

LLMs sparsel tivat ters
Parameter utilization: parsely activale parameber

SLMs wmay utilize their parameters more eFFiciev\tly

Modular design: "Lego-like" composition: small expert models over monolithic LLMs

Tool calling, routing, caching enhance scalability

3.3 SLMs are wore flexible (supports v2, v3)

Cl«eaper tro«in?ng - easier iteration and o«o(o«p‘ta‘tion

Supports: Rapio(behavior upo(ates

Local regulat?on compl?ance

New output Formatting

Democratization: Broader access — greater diversity, reduced bias
Stimulates competition and innovation

3.4 Agents expose narrow LM Func‘iﬁonah‘ty (suppor‘ts V1, v2)

Most M calls in o.ge_nts are constrained and speci{:?c.
LLMs are overkill: 9enera|ist skills get (arw\e_o(via prompt engineering.

Fine-tuned SIMs suffice fFor these narrow functionalities.

3.5 Agentic interactions require close alignment (sup(aorts v2)
Strict output format (e.q., ISON, XML) is essential.
SLMs can be fine-tuned to produce consistent, aligned output.

Hallucinations and Format deviations from LLMs are undesirable.

3.6 Agentic systems are naturally heterogeneous (supports v2)

Modular architecture enables mulhple LMs:
Use SLMs for subtasks
Use LLMs Selectively (e.g., top-level orchestration)

3.7 Agentic interactions generate data (suppor‘ts v2)

Natural F?ne-tuning dataset from agent usage logs
Enables future replacement of LLMs with expert SLMs
Data is L\igl«-quahty and aligneo(with real agen‘t behavior

4. Alternative Views

AV LLMs will alu/o.l/s perform better on gev\eml lav\guage tasks

CA1: Scahv\g laws — larger models = better performance

CA2: LLMs may contain a "semantic hub" for abstraction and generahzo.tion

Rebuttal:

Ag: Scahng low studies assume constant architecture

AQ: SLMs can be Fine-tuned effectively
A10: Test-time compute and reasoning scaling is cheaper for SLMs
A11: Agentic decomposition makes abstract generalization less relevant " '
single, abstract general-purpose model becomes less important

AV2: LLM inference is cl«ea(aer ot scale due to centralization
CA3: LUMs allow better load Balanc?ng and eno(Point utilization
CA4: Cost of infrastructure and ML ops for SLMs is l«igl«

Rebuttal:
A12: Inference modularization reduces CA3

A13: Infrastructure setup costs are Fa“}ng

AV3: LLM-centric world has momentum and head start

Industry inertia favors LLMs. Acknowledge its plausibility, but claim SLM advantages (41-47) can

overcome it.

5. Barriers to Ao(option

B1: Investment bias toward LM infrastructure

B2: SLMs evaluated on generalist benchmarks, not agentic tasks
B3: Lack of marketing/awareness about SLMs

Not tecknological limitations — rather Pract?cal inertia.

Tools like Dynamo and research l«elp break these barriers.

6. LLM-to-SIM Agent Conversion Algoritl«m

ST Log agent calls (pro:mp‘ts, outputs, tool invocations)

Use secure, anonymizeo(logging PIpel}nes

S2: Curate and filter data
Remove sensitive data (PII, PHI)

Use magk?ng/para(ol«rasing tools

S3: Cluster tasks Use unsupervised learning to identify repeating request types

S4: Select SLMs per task
Consider peri:ormance, context size, licensing, o(eployw\e_wt 'Foot(arin‘t
S5: Fine-tune SLMs per task

Use PEFT (LoRA, QLoRA) or Full {:inetun}ng
Optionally distill from LLM out(au‘ts

S6: Iterate and refine

Perioohca“y upo(a‘te models with new data
Loop back to S2 or S4 as needed

(optional)
logger
mn
Tool #1 1
logger _= !
(optishal) (] .

n
1
11
LM — Tool #2
u LM Controller Tool #4
reasest) 11

Tool #4 —)“

Example Control Flow: Example Control Flow:
DIDDEDDDNEDEDND DoDamEEamam

Figure 1: An illustration of agentic systems with different modes of agency. Left: Language model
agency. The language model acts both as the HCI and the orchestrator of tool calls to carry out a
task. Right: Code agency. The language model fills the role of the HCI (optionally) while a dedicated
controller code orchestrates all interactions.

Left (Language Model Agency): The language model (LM) directly handles both user interaction and
tool orchestration. It decides which tools or other LMs to call. SImpler but less modular.

Right (Code Agency): 4 central controller manages all logic and tool calls. The LM is used optionally
for interface or subtasks. This setup is more modular, scalable, and production-friendly.

Key Difference: (M is in control on the left; controller code is in control on the rigl’\‘t.

